Charlotte G. L. Bøttcher

Department of Applied Physics, Yale University		
15 Prospect Street, Becton Center, CT 06511, Office 405		
charlotte.boettcher@yale.edu	\diamond	857.242.9151

Education

1. PhD, Physics Harvard University	$2017 - May \ 2022$
2. MA, Physics Harvard University	$2017 - May \ 2022$
3. Special Student Program, Physics Harvard University	2016 - 2017
4. BS, Physics University of Copenhagen, Niels Bohr Institute	2013 - 2016

Research Position

1. Assistant Professor, Applied Physics Stanford University	Starting position January 2025
2. Post-Doctoral Associate, Applied Physics Yale University	September 2022 – present
3. Post-Doctoral Associate, Physics Harvard University	May 2022 – September 2022
4. Intern, IBM Quantum Yorktown	May 2021 – August 2021
5. Intern, IBM Quantum Yorktown	June 2020 – September 2020

Research Experience

1. Department of Physics, Harvard University	2016 - 2022
Advisor: Prof. Amir Yacoby	Cambridge, MA

- ▷ Development of new probes of quantum materials: leveraging techniques from circuit quantum electrodynamics to study unconventional superconductors.
- ▷ Longitudinal spin-photon coupling: coupling of a high-impedance superconducting resonator and spin qubit for scalable long-distance two-qubit coupling.

2. IBM Quantum, Yorktown	2020-2021
Manager: Dr. Patryk Gumann	Yorktown

- ▷ Interfacing van der Waals (vdW) materials with superconducting resonators: microwave detection of material's internal properties (eg. kinetic inductance) for developing vdW-based voltage-tunable superconducting qubit architectures.
- ▷ Building and setting up transfer stage, glovebox, and atomic force microscope for processing air sensitive vdW materials.
- $\vartriangleright\,$ Developing fabrication recipes for hybrid superconductor-vdW devices.
- **3. Research Laboratory of Electronics**, Massachusetts Institute of Technology Advisor: Prof. William Oliver 2017 – 2019 Cambridge, MA
 - ▷ Development of high magnetic-field-resilient planar superconducting resonators in collaboration with Lincoln Laboratory. Designed and measured resonators in the single-photon regime in presence of high DC magnetic fields.

4. Center for Quantum Devices, Niels Bohr Institute

Advisor: Prof. Charles Marcus

quantum critical behavior.

8	
1. IBM PhD fellowship	2019-2021
2. IBM intern stipend	spring 2021
3. IBM intern stipend	spring 2020
4. Augustinus Foundation	2019 - 2020
5. Knud Højgaard's Foundation	2017
6. Danish National Research Foundation (DNRF)	2016 -2017
7. University of Copenhagen Scholarship	2016 - 2017

Publications

Recognitions

- 1. C. G. L. Bøttcher, N. R. Poniatowski, U. Vool, M. Wesson, A. Grankin, V. Galitski, A. Yacoby, "Circuit QED detection of induced two-fold anisotropic pairing in a hybrid superconductorferromagnet bilayer." arXiv:2306.08043, submitted to Nature (2023).
- 2. C.G.L. Bøttcher, F. Nichele, J. Shabani, C. J. Palmstrøm, C. M. Marcus, "Dynamical vortex transitions in a gate-tunable Josephson junction array," arXiv:2212.08651, accpeted in Physical Review B (2022).
- 3. C.G.L. Bøttcher, F. Nichele, J. Shabani, C. J. Palmstrøm, C. M. Marcus, "The Berezinskii-Kosterlitz-Thouless transition and anomalous metallic phase in a hybrid Josephson junction array," arXiv: 2210.00318, submitted to Physical Review Letters (2022).
- 4. C.G.L. Bøttcher, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, A. Yacoby, "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications 13, 4773 (2022), arXiv:2107.10269.
- 5. N.R. Poniatowski, J.B. Curtis, C.G.L. Bøttcher, V.M. Galitski, A. Yacoby, P. Narang, and E. Demler, "Surface Cooper pair spin waves in triplet superconductors," *Physical Review Letters* 129, 237002 (2022), arXiv:2112.12146.

2014 - 2015

Copenhagen, DK

> Development and measurement of new device architectures for determining the effective charge

 e^* in the Fractional Quantum Hall regime. 5. Theoretical particle physics and cosmology, Niels Bohr Institute Advisor: Prof. Niels Obers

▷ Gravity from string theory. Deriving graviton states by considering closed bosonic string states

and the effects of placing a single string in the background of many closed strings.

▷ Study of the superconductor-insulator transition in a new platform; a superconductor-semiconductor Josephson junction array. Using various tuning parameters (gate-voltage, temperature, magnetic field) to drive transitions into superconducting, metallic and insulating phases and study

- L. D. Alegria, C. G. L. Bøttcher, A. K. Saydjari, A. T. Pierce, S. H. Lee, S. P. Harvey, U. Vool, A. Yacoby, "High-energy quasiparticle injection into mesoscopic superconductors," *Nature Nanotech*nology 16, 404-408 (2021), arXiv:2005.00584.
- 7. S. P. Harvey, C. G. L. Bøttcher, L. A. Orona, S. D. Bartlett, A. C. Doherty, A. Yacoby, "Coupling two spin qubits with a high-impedance resonator," *Physical Review B* 97, 235409 (2018), arXiv:1801.04858.
- L. A. Orona, J. M. Nichol, S. P. Harvey, C. G. L. Bøttcher, S. Fallahi, G. C. Gardner, M. J. Manfra, A. Yacoby, "Readout of Singlet-Triplet Qubits At Large Magnetic Field Gradients," *Physical Review B* 98, 125404 (2018), arXiv:1802.07627.
- 9. C.G.L. Bøttcher, F. Nichele, M. Kjaergaard, H. J. Suominen, J. Shabani, C. J. Palmstrøm, C. M. Marcus, "Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor- superconductor array," *Nature Physics* 14, 1745-2481 (2018), arXiv:1711.01451.

Manuscripts in Preparation

- 1. C. G. L. Bøttcher, N. R. Poniatowski, U. Vool, M. Wesson, A. Grankin, V. Galitski, A. Yacoby, "Enhancement of magnon-photon coupling in a mesoscopic superconductor-ferromagnet bilayer."
- 2. C. G. L. Bøttcher, B. Cava, A. Yacoby, P. Gumann, "Microwave detection of superconductivity in monolayer WTe₂."

Research Talks

1.	"Interfacing quantum information and quantum sensing" NYU Physics Seminar, talk	December 4, 2022 New York, New York
2.	"Towards detecting unconventional superconductivity using cQED techniques QSC Thrust meeting, ${\bf talk}$	" September 12, 2022 presented virtually
3.	"New avenues in cQED: from quantum information to quantum sensing" SCQTF conference at Clemson 2022, talk Cle	April 30, 2022 emson, South Carolina
4.	"New avenues in cQED: Towards long range coupling between semiconductor spin qubits" NYU Physics Seminar, talk	April 19, 2022 New York, New York
5.	"Longitudinal coupling between a superconducting resonator and a singlet-triplet qubit" APS March Meeting 2022, talk	March 14, 2022 Chicago, Illinois
6.	"Using circuit QED techniques for the study of quantum matter" Yale Quantum Institute Seminar (<i>invited</i>), talk	December 2, 2021 Yale, New Haven
7.	"Hybrid WTe ₂ quantum devices" Harvard Quantum Initiative, talk	January 28, 2021 presented virtually
8.	"Superconducting resonators for quantum information and quantum sensing" 11th International Conference on Quantum Dots, talk	December 12, 2020 presented virtually
9.	"Field resilient resonators as highly sensitive detectors" Les Houches Summer School 2019, poster	July 15, 2019 Les Houches, France

10.	"Using magnetically resilient circuit QED techniques to study 2D materials" APS March Meeting 2019, talk	March, 2019 Boston, MA
11.	"Magnetic field resilient resonators as highly sensitive detectors" Laboratory for Physical Sciences Quantum Computing Program Review, post	August, 2018 Denver, CO
12.	"Scalable spin qubit device with a high-impedance resonator" APS March Meeting 2018, talk	March, 2018 Los Angeles, CA
13.	"Coupling two spin qubits with a high-impedance resonator" Laboratory for Physical Sciences Quantum Computing Program Review, talk	July, 2017 San Diego, CA
14.	"Measuring the superconductor-insulator transition in a semiconductor-super junction array" University of Copenhagen, talk	rconductor Josephson July, 2016 Copenhagen, DK
15.	"Superconductor-insulator transition in a semiconductor-superconductor Josep Workshop on Localization, Interaction, and Superconductivity, Landau Institute, poster	bhson junction array" June, 2016 Chernogolovka, Russia
16.	"Pumping quasiparticles in the Fractional Quantum Hall regime and measure" e^* " Danish National Research Foundation, talk	e the effective charge May, 2015 Copenhagen, Denmark
	Danish National Research Foundation, taik	opennagen, Dennark

Refereed Manuscripts

1. "Introduction to Quantum Error Correction and Fault Tolerance" Steve M. Girvin, SciPost (2022)

Organized Conferences

1. Co-organizing "The 2nd South Carolina Quantum Technology Forum (SCQTF)".	April, 2023
April 14-15, Clemson University	South Carolina.
 Co-organized "The 1st South Carolina Quantum Technology Forum (SCQTF)".	April, 2022
April 29-30, Clemson University	South Carolina.

Teaching Experience

- 1. Research mentor for IBM intern, a Harvard undergraduate student Summer 2021 IBM Quantum, Yorktown
 - ▷ Developed and assigned research project on superconducting circuits: project involves designing new superconducting qubit architectures based on incorporating vdW materials using microwave simulation programs (Sonnet and COMSOL).
- 2. Teaching Assistant, PHYS 15b PSI lab: Electromagnetism. Spring 2019 Harvard University
 - \triangleright Helped develop weekly laboratory assignments and deliver course material through lab sections.
- **3. High school exchange visit program**, Danish high school students. Fall 2018 and 2019 *Harvard University*
 - $\,\vartriangleright\,$ Delivered high-level lectures on quantum information visit program.